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A COUNTEREXAMPLE ON 
EXTREME OPERATORS* 

BY 

M. SHARIR 

ABSTRACT 

We give examples of extreme operators in the unit ball of L(C(X), C(Y)) 
which are not nice operators (i.e., their adjoints do not carry extreme points into 
extreme points in the corresponding unit balls.) Such counterexamples exist in 
fact for every non-dispersed compact Hausdortt space X when the scalars are 
complex, 

1. Introduction 

Let X, Y be compact Hausdorff spaces. C(X) (resp. C(Y)) will denote the 

Banach space of continuous functions on X (resp. Y) with the sup-norm. 

L(C(X), C(Y)) is the space of bounded linear operators from C(X) into C(Y). 
Our problem is to characterize the extreme points in the unit ball of 

L(C(X), C(Y)), called in short extreme operators. To each T in L(C(X), C(Y)) 
there corresponds a w*-continuous adjoint mapping T*: Y---~ C(X)* such that 

T*y(f)  = Tf(y) for each f E  C(X) ,y  ~ Y (cf. [4, p. 490]). T is extreme if and 

only if the only w *-continuous U*: Y-~ C(X)* such that [I T*y -+ U*y [I--< 1 for 

each y E Y, is the identically zero mapping. We say that T in L(C(X), C(Y)) is 

a nice operator if T*y is extreme in the unit ball of C(X)* for each y E Y. In 

other words, T* maps extreme points to extreme points in the corresponding 

unit balls. Obviously, all nice operators are extreme, and the characterization 

problem is actually: must every extreme operator in L(C(X), C(Y)) be nice? 

This problem was posed in 1965 by Blumenthal, Lindenstrauss and Phelps [2] 

and since then has been answered in the affirmative only in some special cases. 

We list here the most important cases: 

a) Real scalars, X is metric [2]. 
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b) Real scalars, X is Eberlein-compact, Y is metric [1]. 

c) Real scalars, T is weakly compact, Y is separable [3]. 

d) Real or complex scalars, T is compact [2], [8]. 

e) Real or complex scalars, X is dispersed [9]. 

f) Real or complex scalars, Y is extremally-disconnected [9]. 

In this paper we show that if the scalars are complex, then in general the 

answer is negative, and for any non-dispersed compact Hausdorff space X, there 

is a compact Hausdorff space Y and an extreme operator T in L(C(X) ,  C(Y))  
that is not nice. These counterexamples are surprisingly simple. For example, if 

X is perfect and Sx is the unit ball of C(X)* with the w*-topology, then 

T: C(X)---~ C(Sx) such that T* is the identity on Sx is the required counter- 

example. In the real case, the situation is much more complicated, but I have 

recently shown that there exist non-nice extreme operators in the real case too 

(A non-nice extreme operator, to appear in Israel J. Math.). In fact, the same T as 

above is extreme and not nice if X is a certain non-metrizable Eberlein compact 

space. 

Our notations are fairly standard. C(X)* is identified with the space of all 

Borel countably-additive regular measures on X. gx denotes the evaluation- 

measure at x E X. If IX E C(X)* and f is any Ix-integrable function, then Ix(f) 

will denote fxfdix, and f .  IX will denote their Radon-Nykodim multiplication; 

that is, t, = f .  IX is the measure on X such that v(E) -- JEfdix for each Borel-set 

E CX. We denote the unit ball of C(X)* by Sx. 

Our first result is a property of w *-continuous mappings F: Sx --~ Sx such that 

II IX -+ F(IX)}} -<_ 1 for each IX E Sx (Theorem 2.3). We use this property to obtain 
our main result - -  the existence of extreme non-nice operators in the complex 

case (Theorem 2.5, Corollary 2.6 and Theorem 2.8). 

I wish to thank Prof. A. J. Lazar for his help and encouragement in the 

research. 

2. The eounterexamples 

Let X be a compact Hausdorff space. Let Sx be the unit ball of C(X)*, 

equipped with the w*-topology. Our first objective is to investigate some 

properties of continuous mappings F: S× ~ Sx such that Ilix -+ F(IX)II < 1 for 

each Ix E Sx. The scalars are either real or complex, unless otherwise specified. 

We begin with a probably known lemma, but we haven't found the proof in 

the literature. Hustad [5, lemma 3.2] proves an analogous result for 11,. 

LEMMA 2.1. Let IX, u E S× such that II IX I[ = 1 and Il lx +- u l[ <= 1. Then there 
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exists a real Borel-measurable function f such that - 1 < f < 1, [/z [(f) = 0, and 

12 =f . l . t .  

PROOF. We can write 12 = 121 + 122, where  vl, 122 ~ SX, 121 is absolutely cont inuous  

with respect  to /z, and 122 is singular to /z. Hence  

1 = Ill* ± 1211 = I1~ ± (  121-'t- 122)11 = II~ ± 12,11+1112=11 

and so 122 = 0 and v is absolutely cont inuous  with respect  to /x. So, by the 

R a d o n - N y k o d i m  theorem,  v = f . / ~  for  some f ~ L 1(/,). Let  us write f = fl + if2 

for  real  fl, f2 (in the real case, f2 = 0 of course).  Then  

1-->ll~±1211--fx Ii±(f,+if=)ldl~l>=fx [l+--f, l d l / x [  

and so 

1 = II/x II--< fx  { l [ l + f l l + l l i - f l [ } d l l ~ l < - l .  

Hence  we must have equali ty everywhere  and so f2 = 0 /x-a.e. and we may 

assume the re fore  that  f is real. Also ½ (I 1 + f, I + I 1 - fl I) = 1 /x-a.e., and so we 

may assume that  - 1 _-< f < 1. Now we have 

I i ± f l d [ t x l =  f× 

whence  [/z [(f)  = 0. 

(l~f)d I ~ 1= I1~ II+l~ I0 ~) 

Q.E.D.  

LEMMA 2.2. Let {/x~}CSx be a net of positive measures, w*-converging to 

I~ E Sx (where obviously tz >= 0), and for each a let f~ be a Borel measurable real 
w* 

function such that - 1 <= f~ <= 1 and such that f~ • i~ :. v. Then v = f . tz for 

some Borel-measurable real f such that - 1 <= f <= 1. If, in addition, tz~(f~) = 0 for 

each a, then also tz ( f )=  O. 

PROOF. By passing to subnets  we may assume that 

w* 

f :  " /~  > vl----O 

w* 

f~ • p.o :, v2_->O. 

H e n c e  
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w* 
f ~  " I x a  )* l J l  - -  V2 ~-~ 11 = V + -  1 / - "  

Therefore vl >_- v ÷ and v2 >_- v- and so ul + ~'2 >= I u I- But 

vl+ u2 = w * - l i m l f o  I.Ix. =< w * - l i m i x ,  = IX 

(because If, I =< 1). Hence I v I <= IX and the assertions follow immediately. 

Q.E.D. 

THEOREM 2.3. Let X be a compact Hausdorff space with the property that for 

every countable A CX, X - A  contains at least two (relative) accumulation 

points. Let F: Sx ---> S× be a continuous mapping such that 1[ Ix +- F(IX )II --< 1 for 

each IX E Sx. Then, for each IX E Sx, there is a real Borel-measurable function f 

such that - 1 -< f = 1, 11 IX I (f)] =< 1 - II Ix II and F(IX) = f .  Ix. 

PROOF. It follows from Lemma 2.1 that F(IX) has this form if Ilix II = 1. 

Assume, therefore, that l[ Ix II < 1. Since IX has at most a countable number of 

atoms, it follows from the property of X that there exist at least two nets in X, 

{y~}, {z,}, converging to y, z respectively such that none of these points is an 

atom of IX. Take the first net and define, for each a, IX~ =½8y~--~82 y and 

,,o = Ix + (1 - I I  Ix [I)ixo. Then II Ixo II = 1, Ix~ is singular to IX and so l[ u, II = 1 for 
w* 

each a. Also v, > IX and 

I~ . !  = IIx I + ( 1 - I l i x  II)l Ix. I--~-~ I Ix I + (1 - I I  Ix II)a,. 

Now, by Lemma 2.1, F(u~)=f~ .u , ,  where -l_---f_-__ 1, are Borel-measurable 
w * 

functions such that l u, l ( f , )=O, foreacha.  Thusf~.u~ > F(IX) and by taking 

a subnet if necessary, we may assume, by Lemma 2.2, that 

f- "1 u. l--L~ f .  [I IX I+ (1-11~ ll)~d, 

for some Borel-measurable real function f, - 1 =< f =< 1 and 

[I IX l + ( 1 -  II IX 11)syl(f)= 0. Hence II Ix I¢)t -<- 1- t l ix  II. (Actually, this last prop- 
erty is trivial once the rest of the theorem is proved.) 

Now, 
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w *  

while ~ - f .  • u. > /z - F 0 x )  and we have therefore 

[t~ ±F(~) I  ~ (1--- f ) ' [ l~ I + ( I - I I ~  ll)ay] 

from which we have 

IF(~)l-<~l ~ + F(~) l+~l  ~ - r (~ ) l - -< l~  1+(1- I I~ II) a,. 

Now repeat the whole procedure with the other net to obtain I F0z)l_---It~ f. 
Hence there is a Borel-measurable function g such that F ( / ~ ) = g . / z  and 

Ig[----1. Thus, 

l~ ---F(~)l = I l---g l ' l~  I<-- (1-f ) ' [ l~ I+ 0 - I I ~  ll)ay]. 

But  tSy is singular to/ . t  and so I 1 - g I --< 1 - - f / x -a .e .  and therefore g = f /z -a .e .  
and this completes the proof. Q.E.D. 

REMARK 1. It is easy to check that every non-dispersed X (i.e., with a perfect 

non-void subset) satisfies the condition of the theorem. (Assume X to be perfect 

and A C X to be countable. If A ~ X then all the points of X - A are relative 

accumulation points. If A = X then X - A is a dense G~ subset and each of its 

points is a relative accumulation point.) As we shall see later, this is the 

interesting case, for the dispersed spaces cannot provide counterexamples. 

REMARK 2. Since the theorems on extreme operators in the real case are 

based mainly on selection theorems (cf. [2]), it is interesting to note that for such 

X and real or complex scalars, the set-val.ued mapping Y.: Sx --~ 2 s" defined by 

is not w*-Iower-semi-continuous, as follows easily from the theorem. 

THEOREM 2.4. If the scalars are complex and X is a perfect compact Hausdorff 

space, then there does not exist a continuous mapping F: Sx-~ Sx such that 

[I/x _+ F(/~ )ll =< I for each ~ E Sx, except the identically zero mapping. 

PROOF. It is sufficient to show that such F vanishes at every purely-atomic 

measure with finite number of atoms, and with norm less than 1. Let /z  be such a 

measure, namely /x = Y~7=1 a~8~, where, for each 1 _- i _-< n, x, ~ X, a ,~  0 and 

E7=1 [ a, I < 1. Now, let {pi}7=~ be a sequence of positive numbers such that for 

each i, p i > l a ,  I and ~7 -~p i= l .  For each l_-<i_<-n there are two complex 

numbers Z ,  W~ such that 
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a , = Z + W . ,  p, : Iz,  l+l  W,I 

and Z~, W~ are linearly independent over the reals. Since X is perfect, there is, 

for each i, a net {yT} of different points in X which converges to x,. Consider the 

following net of measures: 

i = t  

We may assume that for each a, all the points, x~, yT, 1 =< i =< n, are different from 

each other. Thus 

n 

l~l=~(Iz, l&+Iw, la~) and I I~ I I=1  for each a. 
i = l  

w. ~.> 
We have also /z~ :-/z and I/z~ I YT=, p~ax,. 

Now, by Lemma 2.1, F(/z~) = f~ .g~ for each a, where - l=<fo =< 1 is Borel- 

measurable and I/z~ I(f~) = 0. That is 

(Iz, I [ ~ ( x , ) + I w ,  I f ~ ( y T ) )  = o.  
i = l  

By taking subnets if necessary we may assume that 

"m[o( lim[~(x~)=c~; h y~)=d~, i=1,2, . . . ,n.  
a 

Thus E?_-, (I Z~ I c, + [ W~ I d,) = 0. 

We also have 

~__ . ~ w "  

i = I  i = l  

But F is continuous and so F ( g ~ ) - Z ~  F(/z), and by Theorem 2.3, there is a 

(measurable) function f such that - 1 =< f_<- 1 and 

F ( ~ )  = [ . ~  ~- ~, f (x , ) (z ,  + w,)&. 
i = l  

We conclude, therefore, that 

Z~c~ + WM, =. (Z~ + W~)f(x,) i = 1 ,2 , . . . ,  n, 

and from the linear independence of Z,, W~ we have for each i, c~ = d~ = f(x~). 
Hence 
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0 =  2 (IZ~I c, +IW~Id,) = 2 p,f(x,). 
i = l  i = l  

But {p~} was almost arbitrary, and it is easily verified that the last equality can 

hold for every suitable sequence {p~} only if [(x,) = 0 for each 1 =< i =< n. Hence 

F0z  ) = 0 and it follows that F is identically zero. Q.E.D. 

THEOREM 2.5. If  the scalars are complex and X is a perfect compact Hausdorff 

space, then the operator T: C(X)--~ C(Sx), defined by 

is an extreme operator in the unit ball of L ( C(X), C( Sx )) but is not a nice operator. 

PROOF. Consider the corresponding w*-continuous mapping T*: S×-~Sx 

which is actually the identity on S×, namely T*/~ =/x for each/~ E Sx. Obviously 

T is not nice. Nevertheless it is extreme, for otherwise there would exist a 

w*-continuous mapping U*: Sx--~S× which does not vanish identically and 

such that ]lT*/z -+ U*/~ II--< 1 for each/z  E Sx, which contradicts Theorem 2.4. 

Q.E.D. 

REMARK 1. Note that T is an isometry into. We also have by [10, lemma 2.5] 

that T* is not extreme. Another  property of T is that if J is the canonical 

imbedding of C(Sx) into C(Sx)**, then JT is not extreme [9]. Hence the 

composition of two extreme operators between complex C-spaces, each of 

which is an isometry into, need not be extreme. 

REMARK 2. The requirement that X is perfect is essential to Theorem 2.4. 

Indeed, if x0 E X is isolated, then the mapping F0x)  = ½/z ({x0})(/z - 6~o)/x E Sx, 

isn't identically zero, and II - F( )ll -< 1 for each /z E S×. Nevertheless, the 

following proposition holds in the more general case. 

COROLLARY 2.6. Let X be a non-dispersed compact Hausdorff space. I f  the 

scalars are complex, then there exist a compact Hausdorff space Y and an extreme 

operator T in the unit ball of L(C(X) ,  C(Y))  which is not nice. 

PROOF. Let A C X be a non-void perfect subset, and let Y be the subset of Sx 

containing those measures whose support is contained in A. Y is obviously 

w*-compact. Define T: C ( X ) ~  C(Y)  by the adjoint mapping which imbeds Y 

in S×, i.e. T*/z =/~, /z E Y. T is clearly not nice, but it is extreme, for if 

F:  Y---~ Sx is w*-continuous and II T*/x +__F(tt)ll = I1~ ---F(/x)II --< 1 for each 
/~ E Y, then F ( Y ) C  Y (this is true for norm-one measures by Lemma 2.1, and 
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these measures are dense in Y). Now it follows from Theorem 2.4 that F - 0, for 

Y is w*-affinely homeomorphic to SA and A is perfect. Thus T is extreme. 

Q.E.D. 

COROLLARY 2.7. In the complex case, the dispersed compact Hausdorff spaces 

are the only spaces X with the property that for every compact Hausdorff space Y, 
every extreme operator in L(C(X) ,  C(Y))  is nice. 

PROOF. Immediate, since it was shown in [9] that every dispersed X has this 

property. 

We can enlarge the class of extreme non-nice operators in the following way: 

THEOREM 2.8. Let the scalars be complex, and let X be a perfect metric compact 

space. If  Y is a compact Hausdorff space such that there exists an open continuous 

mapping ~ of Y onto Sx, then the operator T: C(X)--~ C(Y)  defined by T*y = 

~(y),  y E Y, is extreme but not nice. 

PROOF. That T is not nice is obvious. If T is not extreme, then there exists a 

continuous mapping tp: Y--~ Sx which does not vanish identically and such that 

[Itp(y)-+~b(y)ll_-<l for each y E Y .  Define now the set-valued mapping 

E:Sx--~2 s" by E(/z) = c~W'tp[~- l ({ /z})] ,  ~ E Sx. For each /z E Sx, Y.(p,) is a 

non-void compact convex subset of Sx. We shall show that Y. is w*-lower 

semi-continuous in the sense of Michael [7]. It is sufficient to show that for each 

/~o E Sx, u0 ~ ~[~-1 ({/-to})] and Vo a w *-neighborhood of u0, there cannot exist a 
w* 

net {/x~} of measures in Sx such that ~ > /Xo and E(/~,) n v0 = O for each a. 

Indeed, let {/z~} he such a net and write u0 = 6(yo) where yo U Y and ¢ (y0) = ~o. 

Since ~ is open, there exists a net {y~} C Y such that y~--~ yo and ~(y~)=/x~. 

Then we must have eventually ~b(y~)E E(p,~)n Vo. This contradiction shows 

that E is lower semi-continuous, Now, S× is w*-metrizable, and so, by Michael's 

selection theorem [7] there exists a continuous mapping F: Sx -~ Sx such that 

F ( / z )E  Y(/z) for each /z E Sx and F doesn't vanish identically. But then 

II/z _ F0x)II --< 1 for each/.t E Sx. This contradicts Theorem 2.4 and therefore T 

must be extreme. Q.E.D. 

REMARK 1. If ~0 is just a continuous surjection of Y onto S×, the theorem may 

fail, as might be seen by taking Y = fiN and define ~ by mapping N onto a 

dense countable subset of Sx. The resulting operator is not extreme because it is 

not nice, and Y has a dense set of isolated points (cf. [2]). 

REMARK 2. Similar results to Theorem 2.8 can be stated for non-dispersed X, 
in view of Corollary 2.6. 
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REMARK 3. If X is a compact metric space, then Sx is easily seen to be 

homeomorphic to a norm-compact convex subset of t 2, and therefore, by 

Keller's theorem [6], homeomorphic to the Hilbert-cube. Thus, in the metric 

case, our counterexample is actually an extreme non-nice operator  in 

L(C(X), C([0, 1]'°)). It is an open problem, whether [0, 1] -° may be replaced by 

"smaller" metric spaces. For example: Does there exist an extreme non-nice 

operator in L(C[0,  1], C[0, 1])? 
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